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ABSTRACT 

We investigate the virtual photon structure functions 

for A2<<P2<<Q2, where -Q2(-P2) is the.mass squared of the 

probe (target) photon. We do this to next-to-leading order 

in QCD. The nonleading corrections significantly modify the 

leading log result, in particular at large x. Also, the 

perturbatively calculated structure function is positive at 

low x even for P2*l GeV2. (For a real photon target it 

becomes negative at low X.) For large PL the QCD result 

approaches the box diagram (Born) structure function also 

when nonleading contributions are included. It is, however, 

important to include the large nonleading box diagram 

contributions in making this comparison. 
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I. INTRODUCTION 

In the last few years, the real photon structure 

functions [l-21 have been much studied using quantum 

chromodynamics (QCD) [3-101 

Remarkably, the photon structure function is calculable 

in QCD--not merely the Q2 dependence but also the shape and 

magnitude in the large Q2 limit. This is due to the 

dominance of the term COKKeSpOnding to a pointlike coupling 

of the photon over uncalculable terms arising from the 

hadronic component of the photon [2,3]. 

It is tempting to ask what happens to the StKUCtUKe 

function of a virtual photon with "mass" much larger than 

the QCD scale parameter A. Should we expect that then there 

are no uncalculable terms at all? In this paper we study 

this kinematical regime (Fig.l), 

(1.1) 

where q2=-Q2<0 (p2=-P2<O) is the mass Squared of the probe 

(target) photon in the 2y process, accessible in efe- 

collisions Ill. The second inequality in (1.1) is to avoid 

the appearance of power corrections of the form (P2/Q2)k 

(k=1,2,...). 

In previous work [ill, we studied virtual photon 

structure in the kinematic region (1.1) to leading log order 

in QCD. 2 2n We summed up the leading logs, (aslnQ /P ) , using 

the Altarelli-Parisi [121 type evolution equation. 
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In the present paper, we extend our previous 

calculation to nonleading OKdeK in QCD, this time using the 

operator product expansion (OPE) and renormalization group 

(RG) approach.* (The next-to-leading order calculation for a 

real photon target was done by Bardeen and Buras [7].) 

In the kinematic region (1.1) the hadronic component on 

the photon can also be dealt with perturbatively. More 

precisely, we can apply the OPE to photon matrix elements of 

the hadronic OpeKatoKS, <Y(P) lO;/Y(p)' fOK i=$ (quark 

singlet), NS (non-singlet). There remains no incalculable 

term, in contrast to the real photon case, where the unknown 

photon matrix element of the hadronic energy-momentum tensor 

appears [3,71. 

Our main concern here is the virtual photon structure 

function. HOWeVeK, there is some relevance to the real 

photon case. If we introduce a normalization point for the 

hadronic operators and keep logarithmically decreasing 

terms, then we find that the Q2 dependence is controlled by 

the same parameters, as well as by the unknown photon matrix 

element of the hadronic operators. 

By inverting the moments we will see that in the limit 

(1.1) the nonleading corrections to the virtual photon 

structure functions are large -- especially at large x. It 

modifies the leading-log result significantly. The pertur- 

*See for example ref.[lO]. 
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batively calculated off-shell photon structure function is 

positive definite even at small x. The corresponding real 

photon structure function is negative there, as was shown in 

[81. 

As already mentioned, we confine ourselves here to the 

limit (1.1) so as to be able to neglect power corrections of 

the form (P2/Q2) k (k=1,2,...) 1131. These arise from 

kinematical target mass effects 113,141 and also from 

higher-twist corrections. Experimentally, we expect more 

events fOK the region P2,,Q2 than fOK the doubly deep 

inelastic region P2-Q2, so it is also of more practical 

interest. (At the end of this paper we will briefly comment 

on the P2-Q2 region.) 

The paper is organized as follows. In the next section 

we present the theoretical framework. In section 3, we 

calculate moments of the virtual photon structure functions 

including nonleading log QCD corrections. We discuss the 

real photon case in section 4. In section 5 we invert the 

moments for virtual and real photon structure functions and 

present the results. The last section is discussion. 
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II. THEORETICAL FRAMEWORK 

Unless otherwise stated, we will follow the notation of 

Bardeen and BUKaS in OUK discussion [7]. 

Consider the forward virtual photon-photon scattering 

amplitude (Fig.2). 

. . 
T ,,,8(p,q) = i+fd4xd4yd4ze'qxe1p'Y-Z) 

x <OIT(J~(x)Jy(0)Ja(y)JB(z)) IO> . (2.1) 

The structure tensor is just the absorptive part of this 

amplitude, 

W uvaB(Plq) = + Im Tuv(*8 = 

x <O/T*(J~(x)J~(y))T(Jv(0)J8(z)) IO> . (2.2) 

There are 8 independent structure functions in W pvaB' as 
discussed in refs.[18,19]. Here we will take a spin average 

for the target photon. The number of independent structure 

functions is thus reduced to two. Neglecting p2/Q2 

corrections we call them FJ and Fl, 
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w;"(P,q) = + f s;;, (p) 'UvaB (p,q)& (P) 

=L aB, 
29 uva8 (pfq) 

= + ld4x ,hx <-f(~)lJu(x)~~(o) (Y(P)> spin av. (2.3) 

and 

W:y"(P,S) = (gu" - quqv -) i F~(x.Q2,p2) 
q2 

- p's (pPq"+p"qu) + 'p;;'2 g 
q2 1 -?- 

pv P*q F; (x,Q 2,P2) _ 
(2.4) 

where x=Q2/2p.q. Now, F; and Fl can be written as linear 

combinations of the eight independent structure functions 

introduced, fOK example, by BKOWn and Muzinich 1181. They 

decompose WuvaB into the structure functions Al,...A8 as 

follows, 

W uvaB(p'q) = J, 'ivagAi ' (2.5) 

where are independent tensors given in ref.[l8]. FOK 

P2<<Q2 we find 



-7- FERMILAB-Pub-81/55-THY 

F; = ; (p'q)q2(A2+A3+2A7+2A8) 

FT = -(p.q)2(A2+A3+2q2A5+2A7+2A8) 

F; = - (p*q)q2A5 (2.6) 

and thus xFY=FY-FY 1 2 L' Incidentally, FZ-F: can be written in 

terms of transverse helicity amplitudes [9,18,19], 

Fy - 
++ 

2 Fl = 8na x[W++ + WfI) (2.7) 

where WI+,(WIz) is the amplitude for helicities ++a++(+-++-). 

Applying the OPE to the current product Jp (x) Jy (0) we 

get the moments of the structure functions FJ, 

dx x n-2 F:(x,Q2,P2) = 

= I 
i=$,G,NS 

C~(Q2/~2,s(u),a)<Y(P) loo /Y(P)> 

+ C~(Q2/~2,g(~),a)<Y(p) IO:(P) IY(P)> , (2.8) 

where OA, C1 n are the composite operators and their 

coefficient functions appearing in the OPE. $, G, NS and y 

stand for singlet fermion, gluon, non-singlet fermion, and 

photon respectively. Mutatis mutandis, a similar formula 

holds for Fl. We IIeCJleCt CpaKk masses throughout, 
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appropr~iate to our P2,Q2+m limit. (These effects have been 

considered by Hill and Ross, who also discussed P2#O[271). 

The essential feature in (2.8) is, of course, the 

appearance of photon operators 0,' in addition to the 

familiar hadronic operators. 

We can freely choose the renormalization point u, since 

the left-hand side of (2.8) does not depend on it. We later 

take u2=-p2=P2 for the sake of convenience. For -p2=P2>>A2 

we can calculate the photon matrix elements of the hadronic 

operators perturbatively. Choosing u2 to be close to P2 we 

order, get, to lowest 

<Y(P) lO~(l.0 /u(P)> = "'( 2 ,ytn 
16~~ 

‘ln 5 + AA2jij (2.9) 
(i=$,G,NS) where KPrn = (%i)i are one loop anomalous 

dimension matrices between the photon and hadronic 

operators. (See Appendix A). 

The A( depend on the renormalization scheme for the 

operators Ok(u) [201. This scheme dependence is cancelled 

by that of other terms in the expansion. For definiteness, 

we will work in the MS scheme. Putting u2=-p2=P2, we find 

<Y(P) loo IY(P)> A(2)i e2 _ 
)l2=+P2 1671~ n - 

(2.10) 

The right hand side is in general non-zero. 
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Noting that to lowest order in the QED coupling, 

<Y(P) lO~(u)lY(p)>=l, we find that the moments (2.8) are 

given by 

dx xn-2 ' e2 F2(x,Q2,P2) = 1 CA(Q2/P2,y(P2),a) - 
(2) i 

i 16x2 An 

+ C;(Q2/P2.;(P2) ,a) . (2.11) 

III. VIRTUAL PHOTON STRUCTURE FUNCTIONS: 

NONLEADING EFFECTS 

In this section, we calculate the moments of the 

virtual photon structure functions by evaluating the right 

hand side of (2.11). 

Solving the renormalization group equation for the 

coefficient function to lowest order in a=e2/4n, we find 

= ;,(Q2/P2,q(P2) ta)~n(lrs(QZ 5 ) 

,) , + c;(L,(Q2) ,a 

where 

C~(Q2/P2,~(P2) ,a) = 

(3.1) 
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$,(Q2/P2&P2) ,a) = 

s P2) = kQ2) dg’ it,,Cg’,a) 9, (4”) 
B(g’) dg" 

5 (g") 1 (3.2) 

,. 
with y, and $, the usual hadronic anomalous dimension matrix 

and the off-diagonal element which represents the mixing 

between the photon operator and the hadronic operators (as 

given in (A.4)). zn(ci) is the coefficient function of the 

hadronic (photon) operators. 

zn (Lt?(Q2) 1 = &J, (I+ g2(Q2) B;) 
16x2 

Q 
i2(Q2) n 

16a2 BG 

$S (1 + ii2 (Q2) 

16n2 BiS 

e2 n CYn(l,g(Q2),u) = - 
len2 6y By 

(3.3) 

(3.4) 

with 6,,,=<e2>, $S=l, 6y=3f<e4> (our normalization of the 

structure function differs from that in [7] by a factor e2). 

There is no a dependence of En to this order. The one-loop 

coefficient functions B"=B" 
J, NS and 82 are given in ref. L2.01. 

Bf3 is related to BE by By=(Z/f)BE. 
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The ??n can be calculated in a straightforward way to be 

;+xn (Q2/P2,ii(P2) ,a) = 

l-X2/2Bo 

x;/2Bo 

-q .I 1, j :FI:brf; f ,:;,,, (I- ($g’““, 
1 

1+x7/2flo 
(q;; a;; )12'280+1)/ 

+z ( n 
1) IPY 1 

i X2/2Bo 

(l-(;: d; !i:/z* 0) ] (3.5) 

where X2 are the eigenvalues of the one-loop anomalous 

dimension matrix ii, and PT are the corresponding projection 

operators. j(l) is 
n the, (hadconic) two-loop anomalous 

dimension matrix, and 2: (z(A) ) is the one- (two-) loop off 

diagonal element of the anomalous dimension matrix. (See 

Appendix A). 
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Putting all this together into the eq.(2.11) we get our 

final expression for the moments of Fz. They are 

dx x n-2 
Fz(x,Q 2,P2) = 

{$ d; )+2ao+1\ 

+ $ B;{l-(#$':'"""l 

+ c; 

I 
(3.6) 

where i runs now over +,- and NS. In eq. (3.6) we have 

defined 

"n Pi = 2; P; Z,(l,O). 

The coefficients A, 9, C are given by 

A; = 

-p '1 n+ 
n r pi Cn(l,O) 

l-q/2so 

0 +2i3o 

+li(l)p" Ql,O) 1 n i x2/28o 

P; E,(l,O) 

(3.7) 

(3.8) 
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+O +K n '2 
1 

1+X;/200 

(3.9) 

cc = 28,($B; + ~;2'En(1.0)) 

= 24BOf <e4> & - z 6 -- 
n+2 +1 

n2 

4 + 4 
(n+1)2 (n+2) 2 I (3.10) 

(Explicit expressions for A and B will be found in Appendix 

B) 

Equation (3.6) is the main result of the present paper. 

The first term is the leading log result obtained in a 

different way in ref. [Ill. (Of course, G(Q2) is now to be 

taken as the effective coupling including two-loop terms.) 

The remaining terms in (3.6) are nonleading QCD 

corrections. Note that there is no unknown term in (3.6), 

so that this equation is also valid for n=2 provided we 

regard the expression (l/s)(l-xe) as its limiting value for 

E'O, -1nx. 
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We now discuss the renormalization scheme independence 

of A n i, By and Cy. We start with BT; it can be written in 

terms of a scheme-independent combination of two-loop 

anomalous dimensions and one-loop coefficient functions in 

the hadronic sector (1281, [291; see also Appendix 9). 

Using the scheme-independent coefficients Rk n introduced in , 
(281, we write 

n ni Bi = Li R2,n (i=+,-,NS) (3.11) 

where 

'n LY = Pi 1 
l+hY/2Bo 

(3.12) 

The scheme independence of BT follows immediately from these 

two equations. 

As for Cfl, we note that 

6 8" 
Y Y 

= 6<e4>Bn G ' 

Af2' Ql,O) = n 6<e4> AA2,!SG . 

Thus, from (3.10), 

= 2Eo (2) J, ' 6<e4> (BE + An G). 

(3.13) 

(3.14) 

(3.15) 

(In these expressions, AA2,&' differs from that in ref. [20] 
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by a factor g2/16a2; of course, all this is written in the 

MS scheme.) Now, from ref. ,I201 I 
(2)J, we know that Bz+A, G is 

scheme independent. Thus, Cfs is. also scheme independent. 

The scheme independence of the A: follows from (3.8) 

and also (3.6). 

Now we go on to the renormalization scheme dependence 

of the QCD coupling. The relation between the MS and iKg 

schemes is 

AZ = AMs exp 1 
where yE=O.5772... and 

afs(Q2) = ay(Q2) - 
[a =(Q2) 1 2 

’ 4rr B. (ln4n-yE) 

(3.16) 

(3.17) 

Then, under the MS+m transformation we have 

A; + ii; = A: + $8,(ln 41 - y,) (3.18) 

By + g; = By - LyBO(ln 4a - y,) , (3.19) 

whereA? and B;(iiy) are in the MS(s) scheme. 

xy and Ey are obtained by replacing the MS scheme 

quantities B!, Bg, B", x:2, by the !&? Y 
scheme correlates, 8" 4J' 

etc. These can be got by removing the term proportional to 

ln4n-yE as follows: 
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471 - y,) (3.20) 

= Bg _ 1 Otn 2 yJIG (In 47 - Y,) (3.21) 

Y 

32) = g(2) 
n n - + Zi(ln 4n - y,) 

From (3.21) and the relation 

ji(VJ, = A(aJ’ 
nG n G + + yih"(ln 477 - yE), 

(3.22) 

(3.23) 

(3.24) 

we see that Cfs (eq.(3.15)) does not change under MS+=. 

Incidentally, we can now rewrite (3.6) in a slightly 

different'form. Introducing 

d; = $'2kJo (i=+,-,NS) , (3.25) 

and using (3.11) and (3.12), we get 

l;dx x"-~F;(x,Q~,P~) = 

(3.26) 
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This is useful because the quantities 2 l+(as(Q )/4s)Riln in 

the first term are the same ones we meet with in the case of 

the nucleon structure function [28,29]. 

For completeness, we now give the formula for the 

moments of the longitudinal structure function Fl, 

j;dx x"-~F;(x,Q~,P~) = 

= $,(Q2/P2,~(P2),a)E~L) (l,ti (Q2) 1 

+ C(L)y(l,i(Q2) ,a) n (3.27) 

+ 28OGYBY,L I 
where 

p(L) ,n = 
i 

4 4 B;,L = B;S,L = - - 
3 n+l 

(3.28) 

n 
BG,L = 

8f 
(n+l) (n+2) 
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n 
BY,L 

= ii B" 
f G,L 

(Expressions for G(t)'n and 6 9" 
Y YrL will be found in 

Appendix C.) 

IV. REAL PHOTON STRUCTURE FUNCTIONS 

Starting from our final result (3.6), we can now 

recover the moments of the real photon structure function. 

These follow formally by setting P2=A2, 

?dx xn-2F;(x,Q2) = 
0 

e2 
= 3 & 1+1’/28 

2 

,‘:i2) 
(4-l) 

i 0 

+ 1 A" + 
i=+,-,NS ' 

1 B" + C; 
i=+,-,NS ' 

I 

However, this equation no longer holds for n=2. There is an 

extra term proportional to a Kronecker &-function 6n 2. Its I 
coefficient is an unknown constant coming from the photon 

matrix element of the hadronic energy-momentum tensor. In 

order to see the situation more clearly, 
* 

consider the usual 

expression for the moments of Fs (including the hadronic 

contribution)[3,7], 

*We thank W.A. Bardeen for discussions on this point, and ad- 
vice on this section. 
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M;(Q2) E jldx x 
0 

n-2F;(x,Q2) = 

where 

n+bn+ 1 
d; 

i=+,-,NS 
M,t,las(Q2)1 , 

I 
(4.2) 

a (4.3) 

bn = ; A; f i B; + cy" (4.4) 

If we consider the Mi(Q2) to be a function of the 

continuous variable n, then (4.4) requires bn to have-a 

singularity at n=2. This singularity has to be cancelled by 

one in M- n, so as to give the correct Mz(Q2). 

Explicitly, we have 

bn jc + b; 
n+2 d" 

where dz=O. Thus, we require 

M; ---) - 5 + b; 
n+2 d" 

(4.5) 

(4.6) 

The constants c and b; are, of course, perturbatively 

calculable, * but b; is not. 

* c = $r~ b,d- n = -(81/Bo~+)K;~~G <e2> where the index n=2 has 

been omitted and use has been made of the relations: 

0, (1) = 
QJJ, 

0, (1) 
- ‘G$ 

0, (1) = 
’ ‘JIG 

0, (1) 
- ‘GG and K$l) = - Kd'). 
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Thus, 
Mz(Q 2 1 2 g 1 4n 

2Bo (Q2) a2;clnaS(Q 
2 

) + b' 1 (4.7) 
S 

where b'=bi+b; is an unknown constant. This expression for 

n=2 was first obtained by Witten [3). 

The singularity in M, can at least be isolated by 
introducing a normalization point Qi (as is done for the 
nucleon target case). Taking u2=Q2>,A2 0 we get 

M;(Q2) 

+ 1 A; + r. By + cy" 
i i 

-. 
+ 1 

i 
250 AA - 4n 

+ o(a,) 

I 
where 

I. 

Ai = [li;(Q;, - ii;') lP;$pro) 

with 

<yQp) IY> = g qu2) 

(4.9) 

(4.10) 

being the uncalculable matrix element. 
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In eq. (4.8) we have neglected O(as) terms. For 

consistency, we should therefore keep only log decreasing 

terms with dy<l. 

The unknown hadronic components Mk in (4.2) are related 

to (4.9) as follows, 

MA = 2BOAA(Qi) Ia, 
-d; 

- 4nLy [a, (Qg) 1 
-1-d; 

(4.11) 

- Ay[aS(Qi) 1 
-d; 

The singularity we are looking for is thus in A:. (This 

situation is similar to that for a nucleon target, where a 

singularity appears in a quantity called x: by Bardeen and 

Buras [28].) 

Taking Q2 very large and neglecting logarithmically 

decreasing terms we finally get the moments 

M;(Q2) 

+ 1 A; + 1 B; + C; 
i 1 

+ Q,J-c 1 n aS(Q2) + b2 - A2} 
-1 

(4.12) 

where b2=2fi0A2(Qi)+c lnas(Qi). This now isolates the 

additional Kronecker &-function term. When inverted. it 
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gives rise to a h-function at x=0. (Of course, this 

6-function only appears for Q2=m; 2 at finite Q it will be 

smeared out.) 

This is the prediction that perturbative QCD makes for 

the real photon structure function at low x. There is a 

term which behaves as -const./x, giving a negative structure 

function, and a &-function at x=0. To take account of the 

finite Q2 smearing of the 6-function, we would have to know 

MA (Q;) or AA a.i a function of n. These~cannot be 

calculated in perturbation theory. 

V. INVERSION OF THE MOMENTS AND RESULTS 

Numerical inversion of the moments is now standard. 

The integrand has to be analytically continued to complex n. 

For the two-loop anomalous dimensions 121-261 and the 

one-loop coefficient functions [201, we adopted the 

asymptotic expansion form obtained by Gonzalez-Arroyo, Lopez 

and Yndurain 122,231. (This form was, however, modified 

slightly so as to fit the low moments.) Their form has 

simple analytic properties and reproduces the moments quite 

well. The numerical results are independent of the location 

of the contour (of course, we constrained it to be to the 

right of all singularities). 

Our results for the virtual photon structure function 

Fz(x,Q2,P2) and for the real photon Fi(x,Q2) are shown in 

Figs. 3a and 3b. We chose Q2=30 GeV' and P2=l GeV2 with 
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A==500 MeV (Fig.3a) and 100 MeV (Fig.3b).+ We also show our 

previous leading-log calculation for completeness [ill. 

Here, in our present analysis, we have taken f=4. 

From the figures it is clear that the nonleading 

corrections appreciably modify the virtual photon structure 

function--especially at large x. We also confirm that the 

(perturbatively calculated) real photon structure function 

is negative at small x. This was first pointed out by Duke 

and Owens [8]. (Remember, however, that we do not attempt 

to smear out the 6(x) contribution.) 

Where does the negative structure function come from? 

As given in (4.4), b n to nonleading order is the sum of 

seven parameters A;, By and Cy (for i=+,-,NS). We list them 

for n=2,4,... 20 in table 1. One might at first think that 

the negative structure function is due to large negative 

values of C" 
Y' This is not the case, however. Defining Df: 

and its inverse transform Dy(x) such that 

Dyn = cy/2480f<e4> 

D; = (dx x"-~D~(x) 

Then we easily find 

(5.1) 

t Strictly speaking, 
able 1141. 

we ought to modify x to a 5 scaling vari- 
This is however, a part of the P2/Q2 corrections 

we ignore. 
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Dy(x) = 6x2(1-x) - 2x - 2x(1-2x+2x2)1n x , (5.2) 

which we plotted in Fig. 4a. We see from this figure that 

Cy mainly contributes at large x, reducing the leading-log 

results. 

In fact, the negative structure function arises from 

A". This can be seen by numerically inverting A", as shown 

in Fig. 4b, where A"=lidx xne2A-(x). (For a virtual photon, 

the effect of A" is reduced due to a factor 

l- 
U,(Q2) d” i ) as (P2) 

which multiplies it.) The negative structure function thus 

appears due to the same term Al ,which developed a 

singularity for n=2 in the real photon case. * As we remarked 

before, there is no trouble for n=2 and a virtual photon 
. 

target in the k inematic limit (1.1). Correspondingly, Fz is 

well-behaved as x+0 even for P2=l GeV2 in Figs. 3a,3b. 

In Fig. 5 we show the longitudinal structure function 

F~(x,Q~,~~) for Q2=30 GeV', P2=l GeV2 and P2=4 GeV2 with 

Am=100 MeV. For comparison, we also plot F~(x,Q~), the 

longitudinal structure function. 

The statement we made in our paper on the leading l-3 

calculation Ill], that the off-shell photon structure 

functions approach the box contribution, also holds in the 

*Some further discussion for the real photon case is given by 
W.A. Bardeen, talk given at Lepton-Photon Symposium (Bonn,1981). 
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present case. To see this, we need the box contribution 

including finite terms. Including also nonleading pieces, 

these are 

Fz(x,Q2,P2)/<e4>3f z ln Q2/P2 = 

= x[x 2 + (l-x)21 

1 
lnQ2/P2 

2x11 

(5.3) 

-3x+3x2+(1-2x+2x2)1n x] 

FL(x,Q2,P2)/<e4>3f ,: = 4x2(1-x] (5.4) 

where we neglect power corrections P2/Q2 I and quark mass 

effects. Note that the second term in (5.3) is just 

proportional to the inversion of Cy. 

It is not hard to see that in the 

lnQ2/P2<<lnP2/A2 the moments of Fi and Fl approach 

contribution ones as follows, 

M; n(Q2,P2) + 
I 

a 4 
= 3f iice ' 

Mz n(Q2,P2) +3f 4 <e4> (n+l;(n+2) I 

We show this numerically in Fig. 6 for Fz(x,Q2,P2) 

Fig. 5 for Fl(x,Q2,P2). 

limit 

the box 

(5.5) 

(5.6) 

and in 
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VI. DISCUSSION AND CONCLUSION 

In this paper we have studied the structure functions 

of a virtual photon in the kinematic region where P2 (the 

target mass squared) and Q2 diverge with P2/Q2 small. The 

calculation includes nonleading log QCD effects. However, 

all effects proportional to powers of P2/Q2 are neglected. 

We find that the nonleading log corrections to our previous 

leading log results [ll] are important. However, the general 

conclusion that the structure function approaches the 

pointlike box (or Born) contribution for P2#0 remains 

unchanged. This is because the box diagram also has .a 

significant nonleading log piece. The real photon structure 

function (or, rather, the nonleading log calculation of it) 

has a slight pathology in that it is negative for small x. 

This is, of course, the region where the (ignored) hadronic 

contribution to the structure function is important. 

However, it is interesting that even for P2=1 GeV2, we find 

a perturbative structure function which is positive at all 

X. For large enough P2 we would expect this, since the 

entire structure function is perturbatively calculable. 

There is no unknown hadronic piece (which contributed to the 

n=2 moment for real photons). However, it is interesting 

that the difficulty with a perturbative calculation at low x 

is confined to target photons very near the mass shell. We 

expect that this is in some sense the region where 

confinement effects are most important. 
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We have ignored (P2/Q2)k (k=1,2,...) corrections. 

Formally, these are target mass and higher twist 

contributions. For a real photon target mass corrections 

are trivially absent. Higher twist contributions are 

expected to involve a target radius so that for the 

pointlike photon term they should start with the order of 

magnitude a,(~~)fi~/Q~. This should be small if A2/Q2 is 

small. Real photon targets may have small higher twist 

corrections. Off-shell, the (P2/Q2jk power corrections 

should in principle be calculable. (The box diagram 

(P2/Q2)k terms have been calculated by Frazer and Gunion 

1131.) Because of this, it may be useful to comment briefly 

on an extreme limit, double deep inelastic scattering with 

P2 Q2 and both large and also W2=(p2+q)2+= [301.* In this 

case, the leading term is given by the box diagram. There 

are no large logarithms, since [aS(Q2)1n(Q2/P2)]n is always 

small for fixed P2/Q2. Gluon radiative corrections are 

nonleading, and the now important power corrections are 

entirely calculable. If we consider the Nachtmann moments 

(or any other) for u*(P)+u*(q) + hadrons and also those for 

u*(P) + Y*(q) + )I !J + - and take the ratio of one to the other, 

we have the very simple result 

*Chase (311 has recently studied QCD radiative corrections 

in the region where W2 is fixed. 



-2a- FERMILAB-Pub-81/55-THY 

Rn = 
M,,(Zy+hadrons) 

= 32Qf(l+Cn 
as (Q2) 

Mn (WP+P-1 
+ . . . 

IT 1 

where only Cn(P2,Q2) remains to be calculated. Thus in this 

kinematic region the P2/Q2 corrections pose no problem. It 

would be usef~ul to extend the analysis to small P2/Q2, where 

additional logarithms may become important. 
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APPENDIX 

A. Notation 

Here we summarize our notation which we adopt from 

ref.[7]. 

The renormalization-group equation for coefficient 

functions reads to lowest order in a as follows 

(!+$ + 8tgjf(+;:;;y~ = yncgra(-+;;;;] (A.1 
where 

En&l(u)) = 
!J 

h22/u2 g(v)) n I 
J 

c;(Q2/u2,gW) 

CNS (Q2/u2,g (!J) 
v J 

) 

(A. 2) 

The B-function is expanded as 

g3 B(g) = - - 
16~ " - 

(A.31 

with BO=ll-(2/3)f, 81=102-(38/3)f and f being the number of 

flavors. 

The anomalous dimension matrix can be taken to the 

presently concerned order as 



-3o- FERMILAB-Pub-81/55-THY 

-f,ig,a) = ((;i:l, : ) (A.4) 

where T,(g) is the usual anomalous dimension in the hadronic 

sector 

?,b3) = [;;f ;f::- -;3 (A-5) 

g,(g,a) stands for the mixing between hadronic and photon 

operators 

gn(gra) = U$(g,a) I Ki(gra)r &(g,a)) (A.61 

The anomalous dimensions are expanded as 

2 
T,(g) = - ?O + 

16a2 n 
94 -(I) + O(g6) 
(16n2)2 " 

gn(g,a) = - - e2 20 - e2g2 
16n2 n 

g(l) 
(16~~)~ n 

+ O(e2g4) 

(A.7) 

(A.81 

The one-loop anomalous dimension matrix pz can be expressed 

in terms of the eigenvalues Xy(i=+,-,NS) as 

p = 
n 1 X"P? 

i=+,-,NS i i 
(A. 9) 

where Py are corresponding projection operators 
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P; = 1 (A. 10) 

;\:-A; 

(A.111 

A: = 

(A.12) 

+O K n and it(') n are three-component row vectors 

z” n 
= (KiVn, 0, K;in) 

O,n = 24f<e2> n2+n+2 
KJ' n(n+l) (n+2) 

(A. 13) 

(A.14) 

O,n = 24f(<e4> - <e2>2) 
n2+n+2 

KNS n(n+l) (n+2) 
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z(l) 
n 

= (K(1) ‘n, ,(I) #n, K(1) ,n, 
J, G NS 

K(l),n = T f<e2,Bfg 
JI n 

K(l) ,n = 12 2 2 T f(<e4> - <e > )B fg 
NS n 

(1) ,n = _ 12 
KG T f<e2>Bgg 

n 

(A.15) 

where the values of BE9 and Bzg are given in ref.[21] 

The running coupling constant is written in terms 

the B-function (A.3) to two-loop order as 

G2(Q2, _ a,(Q2) 1 8 lnlnQ2/A2 1 
16~1' 4n = 

BOlnQ2/h2 o B31n2Q2/A2 
(A.16) 

x(2) = cam, A(2)G, A(2)NSJ 
n n n n 

= 6f(<e2> , 0, <e4> - <e2>2)iL2)$ 

of 

A(2)i (i=d,G,NS) in eq.(2.9) are related to AA2)z n 

eq. (6.22) of ref.[201 as follows 

with 

in 

(A.17) 

A(2)JI = cl2 i(2)J’ 
n G z n G 
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B. Explicit expression for the parameters 
which appear in Eq. (3.6) 

We express the parameters A;, By (i=+,-,NS) and Cy in 

terms of anomalous dimensions and coefficient functions. 

A” = <e2> 1 
+ 

Ai(AT-A", (2Bo+A"-A3 

x 
C 

K;'"{ (4;n-2~o-h34;) rn + y$y;;) rnj (+-A_“) 

+ Kim{ (y/&n-2B0-h3y$) rn + yOrny(l) rn 
GJ, GG 

+ 2@,(2~,+X"-X;) {K;l)'n(y;;n-A") + K;') ,n 0,n - 
'$G ' 

- 28 (26 +Xn-An)AnA(2)' 0 O-++n (,;+:I 

Bl On -- 
80 Kb' 

(2BO+An-A:) (2Bo-A;) (YJI,,, _ OpnmAn) 1 (B-1) 

A" = A;(+ ++ -) (B. 2) 

t-KOrn (l),n+2B K(1),n-28 An A(2)Ns 
NS ‘NS 0 NS 0 NS n 

B1 0,n 
- B KNS (2f3,-A&)1 

0 
(8.3) 

B" = <e2>Kotn 1 
+ JI 

(2BO+A3 0=-A") (2Bo+Ay-A") 
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(1) ,n x I{ CY;;“-A”) Y,,,~ + y;;"y;;' 'n}(2Bo+y;;n-A") 

0,n n (1) rn 
+I (ye+ -A-) yGJ, 

0,n (1) ,n 0,n 
+ 'G$ 'GG lYJIG 

+ 2~o(260+A~-A"){(y;~n-A~)B; + Y;;~B;I 

Bl - g(2f30+A;-A~)A:(y;;n-A~)l 
0 

B" = B;(+ * -) 

n 
BNS 

0,n 1 
= KNS 

2BO+& 

(y(l)'"+28 Bn - Bl n 
NS OJ, %'NS) 

(B.4) 

(B.5) 

c3.6) 

In terms of scheme-independent coefficients Ri! n I 
(i=+,-,NS) introduced in ref.[281 By can be rewritten as 

(i=+,-,NS) (8.7) 

where 

= p" 1 
' 1+A~/2Bo 

(B.8) 

with i P" being the parameters which appear in eq. (3.6) and 

given by 
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-n 
OrnmA” 

P+ = yw - 
A;-,; 

<e2>Korn 
J, 

"n P = i++ e-b -) 

-n 
'NS 

O,n 
= KNS 

FERMILAB-Pub-81/55-THY 

(B.9) 

(B.lO) 

(8.11) 

Ri,nr for example, can be written as 

y(t) ,n 
+ 

2Bo+A;-At 
(B.12) 

where (1) ,n 
y++ and y!!) rn are elements of two-loop anomalous 

dimension matrices p(')ln in the basis in which To'" is 

diagonal. Bi,n is given by 

+ 
B2,n 

Y&” 

=B$+ On n 
Y& -A- 

BGn $ = B" + 
A=-y;;" 

Y;;" 
B: 

and similar equation for R; n and RySn. I , 

(B.13) 

c:: = 24@0f<e4z[&. - i - A&+5- 4 + 4 
n2 (n+l)2 (n+2)2 

I 

(B.14) 
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C. Explicit expression for the parameters in the 
longitudinal structure function 

p(L) In= ce2> 
+ A",-X" 

K~'nI(y~$,n-A?)3(~~1) + 7:;" (n+TF(n+Z)' 

p(L) rn = p(L) ,n(+ +P -) 
c 

NS NS 3(n+l) 

GyB; L = 48fce4> 
, (n+l) (n+2) 

(C.1) 

(C.2) 

(C.3) 

(C.4) 
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TABLE CAPTION 

n A: 
2 8.480 

4 5.782 

6 0.459 

a 0.229 

10 0.146 

12 0.105 

14 0.080 

16 0.064 

la 0.053 

20 0.044 

Table 1. Numerical values of Al, By (i=+,-,NS) and Cy for 

n=2,4,...,20. For these computations, we have 

adopted the G scheme. 

A” 

-5.789 

-3.737 

-3.184 

-2.911 

-2.725 

-2.576 

-2.449 

-2.338 

-2.238 

-6.088 

-1.389 

-1.049 

-0.974 

-0.932 

-0.896 

-0.862 

-0.829 

-0.798 

-0.769 

8" + 

3.885 

0.173 

0.039 

0.015 

0.007 

0.004 

0.002 

0.002 

0.001 

0.001 

B” 
-8.628 

0.730 

6.049 

5.957 

5.667 

5.350 

5.047 

4.769 

4.517 

4.289 

B" NS 

1.309 

2.161 

2.240 

2.161 

2.047 

1.929 

1.819 

1.718 

1.627 

1.544 

c”u 
-16.324 

-18.796 

-15.931 

-13.555 

-11.738 

-10.332 

-9.218 

-8.317 

-7.574 

-6.953 

Sum 

-17.127 

-11.930 

-9.351 

-7.715 

-6.565 

-5.708 

-5.044 

-4.514 

-4.081 

TABLE 1 
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Fig. 1 Deep inelastic scattering on a virtual photon in 
+ - +- e e +ee + hadrons. Q2(P2) is mass square of the 

"probe" ("target") photon (A2<<P2<<Q2). 

Fig. 2 Forward virtual photon-photon scattering. 

Fig. 3 The virtual photon structure function Fz(x,Q2,P2) to 

the next-to-leading order (H.O.) in units of 

3f<e4>(a/a)ln Q2/P2 for Q2=30 GeV2, P2=1 GeV2 with 

(a) $&500 MeV, (b) Am =lOO MeV (solid lines), 

together with the real photon structure function 

Fz (x,Q2) for Q2=30 GeV2 (dashed lines) which can be 

formally reproduced by putting P2=A2. We also plot 

the leading-log (L.O.) results of ref. [ll] (solid 

line for P2=l GeV2 , dashed-dotted line for real y). 

Here, in these analyses, we have taken f=4. 

Fig. 4 (a) Dy (x) . 

(b) A-(x) . 

Fig. 5 The longitudinal virtual photon structure function 

Fz(x,Q2,P2) in units of 3f<e4>(c/n) for Q2=30 GeV2, 

P2=l and 4 GeV2 with Am=100 MeV (solid lines). We 

have also shown the longitudinal real photon 

structure function F$x,Q~) of the box diagram 

(dashed line) and that with QCD correction 

(dashed-dotted lines). 
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Fig. 6 Comparison of the box contribution with the QCD 

prediction for the virtual photon structure function 

Fz(x,Q2,P2) in units of 3f<e4>(a/T)ln Q2/P2 for 

Q2=30 GeV2, P2=l GeV2 and Am=lOOMeV. The results 

are shown both in the leading-log order and in the 

next-to-leading order. The box contribution 

including the next-to-leading-log term is given by 

eq.(5.3). 
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